
Key Transparency
in Proton Mail

1

Transparency Summit

Proton’s End-to-End Encryption

2Key Transparency

Problem: Man-in-the-middle attack

3Key Transparency

Key Pinning
Manual verification of keys

4Key Transparency

Key Transparency

High-level protocol:

1. The server publishes all keys for each Proton Mail address
2. The user verifies that their own keys matches what has been published for their address
3. When sending a message, the user verifies that the recipient public keys matches what has

been published for the recipient address

Automatic verification of keys

5Key Transparency

History of Key Transparency at Proton

● 2018: Started working on KT based on CONIKS
● 2023: Thore Göbel from ETHZ brought in some ideas from SEEMless and Parakeet
● 2023: Launched in beta (opt-in)
● 2024: Whitepaper published

6Key Transparency

Publishing the
list of keys
Creating an epoch

7Key Transparency

High-level protocol:

1. The server publishes all keys for each Proton Mail
address

2. The user verifies that their own keys matches
what has been published for their address

3. When sending a message, the user verifies that
the recipient public keys matches what has been
published for the recipient address

Publishing all keys

8Key Transparency

Every 4 hours:

● Build a Merkle tree of the keys of every email address at every revision

● Compute tree root hash

● Compute chain hash (hash of root hash and previous chain hash)

● Request certificate for {chainhash[0:32]}.{chainhash[32:64]}.

{issuanceTime}.{epochid}.1.keytransparency.ch

● Certificate gets published to Certificate Transparency logs

9

Auditing process

10Key Transparency

Auditors have to check:

● There is only one root hash per epoch ID in CT logs

● The epochs form a consistent chain

● Subtrees are append-only (except for stale entries)

Verifying the
user own keys
The self audit

11Key Transparency

High-level protocol:

1. The server publishes all keys for each Proton Mail
address

2. The user verifies that their own keys matches
what has been published for their address

3. When sending a message, the user verifies that
the recipient public keys matches what has been
published for the recipient address

The self audit procedure

At regular intervals:

1. Fetch the latest epoch & verify the certificate

2. Check that the public key fingerprints in the latest revision match the private keys

3. Check that previous modifications were included in the epoch

4. Check that additional included revisions are signed

12Key Transparency

Signed Key List

{
 Data: [
 {
 Primary: true,
 Flags: 0,
 SHA256Fingerprints: ["0123ABCD...", "4567EFAB..."]
 },
 {
 Primary: false,
 Flags: 1,
 SHA256Fingerprints: ["8901CDEF...", "2345ABCD..."]
 },
 ...
],
 Signature: Sign(PrimaryKey, JSON.stringify(Data))
}

13Key Transparency

Self audit user interface

14Key Transparency

Self audit user interface

15Key Transparency

Verifying the
public keys of
other users

16Key Transparency

High-level protocol:

1. The server publishes all keys for each Proton Mail
address

2. The user verifies that their own keys matches
what has been published for their address

3. When sending a message, the user verifies that
the recipient public keys matches what has been
published for the recipient address

Verifying public keys from the server

When Alice wants to write to bob@proton.me :

1. The client asks for the public keys for bob@proton.me

2. Fetch the latest epoch & verify the certificate

3. Check that the epoch includes the public keys

In the composer

17Key Transparency

mailto:bob@proton.me
mailto:bob@proton.me

Special case: the recipient keys changed recently

If Bob’s current keys are not in KT yet:

1. Alice’s client accepts the keys without verifying the proof

2. Alice’s client stores the keys in local storage

3. At the next periodic audit, Alice’s client verifies that the new keys are

included in the next epoch

Asynchronous verification

18Key Transparency

When the asynchronous verification fails
The server might have lied

19Key Transparency

Other Edge Cases

20

Key Transparency

Deleted & Transferred Accounts
Account ownership might have changes

21Key Transparency

Sampling of Other Issues
Random Sentry errors we’ve gotten

22Key Transparency

More details

https://proton.me/files/proton_keytransparency_whitepaper.pdf

23Key Transparency

https://proton.me/files/proton_keytransparency_whitepaper.pdf

Thanks!

24

Key Transparency

Any questions?

25

Key Transparency

The signed key list: a text representation of keys

Instead of publishing a list of keys for each address, the server publishes a text
representation called the Signed Key List.

It is a JSON string with information about the keys of the address, signed by the user
client with PGP.

27

Verifiable random function (VRF)

Usual hash functions:

● hash = Hash.hash(email)

Verifiable random functions

● (hash, proof) = VRF.hash(email, secret_key)
● yes / no = VRF.verify(email, hash, proof, public_key)

Regular hash functions can be computed by anyone, VRFs can only be
computed by someone with the secret_key.

An asymmetric keyed hash

28

Merkle tree
A single hash for a list of values

29

- Each leaf has an assigned
“path” in the binary tree

- The server can efficiently
prove that a given value is at
the right path

Putting it all together: Creating an Epoch

Periodically, the server releases an Epoch

1. Make a snapshot of the address keys DB
2. For each address, compute the vrf hash: (hash, proof) = Vrf.hash(address.Email)
3. For each address compute the leaf value: leaf = Hash(address.SKL)
4. Create a merkle tree with all leaves, where the path of each leaf is derived from the

VRF hash.
5. Publish the root of the merkle tree

30

Guide Lines
Graphics Light Background

Square Text with shadow Square Circle Text with shadow

01

31

Test

Image with shadow No shadow

02

Top Line Light

Bottom Line
Light

Guide Lines
Graphics Light
Background

32

33

Guide Lines
Graphics Dark Background

06

33

34

Guide Lines
Graphics Light Background

06

04
Guide Lines
Assets

35

05
Logo
Guide Lines

Small

Medium

Large

36

